

**Online ISSN:2583-0376** 

http://jpps.ukaazpublications.com

DOI: http://dx.doi.org/10.54085/jpps.2023.3.1.4

Journal of Phytonanotechnology and Pharmaceutical Sciences



# Investigation of pharmaceutical properties and drug likeness score of punicic acid using bioinformatics tools

# Sevgi Gezici \*,\*\*\*\* and Nazim Sekeroglu \*\*,\*\*\*

\*Department of Medical Biology and Genetics, Faculty of Medicine, Gaziantep University, 27310, Gaziantep-Türkiye

\*\* Department of Biology, Faculty of Science and Literature, Gaziantep University, 27310, Gaziantep-Türkiye

\*\*\* Phytotherapy and Medicinal-Aromatic Plants Application and Research Center (GAUN-FITOTABAUM), Gaziantep University, 27310, Gaziantep-Türkiye

| Article Info                                                                                                                     | Abstract                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|----------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Article history<br>Received 1 February 2023<br>Revised 5 March 2023<br>Accepted 6 March 2023<br>Published Online 30 March 2023   | Punicic acid (PuA) is a type of conjugated linolenic acid (CLnA), commonly found in pomegranate seed oil, bitter gourd seed oil, and snake gourd seed oil. The aim of this study was to determine the molecular targets, <i>in silico</i> drug-like properties, and potential interactions of PuA through network-based pharmacological approaches. In this study, PuA was entered into the ChEBI and PubChem databases, and the possible interacting genes and proteins of PuA were predicted using DIGEP-Pred, Gene Cards, DisGeNET,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Keywords<br>Punicic acid<br>Pharmacokinetic properties<br>Swiss-ADME<br>STRING database<br>Cytoscape software<br>KEGG enrichment | SwissADME and ProToxII databases. Afterward, the STRING database and Cytoscape software were used to<br>clarify the role of possible interacting proteins to create a protein-protein interaction (PPI) network. The<br>KEGG enrichment database was also used for mapping pathways at the molecular level. The predicted<br>pharmacological activities of PuA showed that it is an inhibitor of cyclooxygenase 1, phosphatidyl-<br>glycerophosphatase and alkylacetylglycerophosphatase, protector of mucomembranous, antagonist of<br>the hormone, scavenger of hydroxyls and free radicals, and regulator of lipid metabolism at (Pa)>0.7.<br>According to the pharmacokinetic properties and drug-likeness analysis, PuA could be a potential drug<br>candidate with avalue of $-0.30$ , in addition to good brain barrier permeability and gastrointestinal absorption.<br>Moreover, the results of toxicity analysis revealed that PuA did not cause any detectable toxicity with an<br>LD <sub>50</sub> of 3200 mg/kg. A total of 36 protein-codinggenes were identified as likely interacting targets of PuA,<br>and PTGS2, IL6, PPARG GSR, PPARA, PPARG, CAT, SLC2A4, CCL2, and GAPDH were selected as core targets in<br>the PPI network (confidence score = 0.4). Based on the KEGG enrichment of pathways, a total of 129<br>different signaling pathways transcriptional dysregulation in cancer, PI3K-Akt signaling pathway in diabetic<br>complications, FOXO signaling pathway, microRNAs in cancer, PI3K-Akt signaling pathway in diabetic<br>complications, FOXO signaling pathway, and IL-17 signaling pathway were indicated as the major<br>signaling pathways associated with PuA-regulated proteins (FDR<0.05). The preliminary results of this<br>study support the beneficial effects of PuAon human health, including its antileukemia, anticancer,<br>antiobesity, anti-inflammatory, antioxidant, and antineoplastic properties. Accordingly, the combination<br>of PuA and network-based pharmacology has the potential to reveal the therapeutic and molecular<br>mechanisms of PuA. |

# 1. Introduction

Plant secondary metabolites are natural compounds produced by plants that are not involved in the primary functions of the plant, such as growth and development. These compounds have been found to have important medicinal properties and can be used in the treatment of various diseases. For example, some secondary metabolites have been found to have anti-inflammatory properties that can be useful in the treatment of conditions such as arthritis (Epifano *et al.*, 2007; Velu *et al.*, 2018; Gezici and Sekeroglu, 2019).

Corresponding author: Dr. Sevgi Gezici

Associate Professor, Department of Medical Biology and Genetics, Faculty of Medicine, Gaziantep University, 27310, Gaziantep-Türkiye E-mail: drsevgigezici@gmail.com, sevgigezici@gantep.edu.tr Tel.: +90-5376348061

Copyright © 2023 Ukaaz Publications. All rights reserved. Email: ukaaz@yahoo.com; Website: www.ukaazpublications.com Other secondary metabolites have been found to have anticancer properties, which can be used in the development of new cancer treatments. Accordingly, the study of plant secondary metabolites is an important area of research in the field of medicine, as it has the potential to lead to the development of new and effective treatments for a wide range of diseases (Hussein and El-Anssary, 2019; Sekeroglu and Gezici, 2019; Singh *et al.*, 2021; Wu *et al.*, 2022).

Punicic acid (PuA) is a type of conjugated linolenic acid (CLnA) found in various plant species. The most common plant sources of punicic acid are pomegranate seed oil, bitter gourd seed oil, and snake gourd seed oil belonging to the Punicaceae, Bignoniaceae, Rosaceae, Curcubitaceae, and Euphorbiaceae families. PuA is known for its anti-inflammatory, anticancer properties, antidiabetic, and antioxidant, making it a popular ingredient in natural medicine and supplement products. It has also been shown to improve lipid metabolism and help reduce the risk of cardiovascular disease by

reducing cholesterol levels and improving insulin sensitivity. There is also evidence to suggest that punicic acid may be beneficial in treating metabolic disorders such as obesity and type 2 diabetes (Bassaganya-Riera *et al.*, 2011; Aruna *et al.*, 2016; Khajebishak *et al.*, 2019; Franczyk- arów *et al.*, 2023).

Bioinformatics tools and network-based pharmacology are powerful tools for identifying and validating potential disease targets. Bioinformatics tools provide an integrated view of biological systems, allowing researchers to identify key pathways and genes that may be involved in disease. Network-based pharmacology is a field of research that involves analyzing the interactions between drugs and the molecules in the human body. Network-based pharmacology takes this analysis a step further by predicting how drugs may impact these biological networks. By combining bioinformatics and network-based pharmacology, researchers can identify novel disease targets and develop more effective treatments for a wide range of diseases (Berger and Iyengar, 2009; Oulas et al., 2019; Gezici, 2022). Researchers have used network-based pharmacology to investigate the potential therapeutic benefits of phytochemicals. By studying the interactions between phytochemicals and various proteins in the body, researchers have identified potential targets for drug development. This research could lead to the development of new treatments for a variety of health issues, including cancer, diabetes, neurodegenerative diseases, and cardiovascular disease. These tools have already been successfully applied in drug discovery for cancer, cardiovascular disease, and infectious diseases, and are likely to become even more important in the future as the amount of biological data continues to grow (Gezici and Sekeroglu, 2021a; Gezici and Sekeroglu, 2021b; Kumar et al., 2023). Thus, we aimed to determine the molecular targets, drug-likeness properties, and potential interactions of punicic acidusinga network-based pharmacology approach. The combination of punicic acid and network-based pharmacology has the potential to uncover the therapeutic and molecular mechanisms of punicic acid.

## 2. Material and Methods

# 2.1 Chemical structure and pharmacological properties

The Chemical Entities of Biological Interest (ChEBI) database, a part of ELIXIR Core Data Resources, was used as dictionary of molecular entities and chemical properties of PuA (Hastings *et al.*, 2016). PubChem database, a public chemical database at the National Center for Biotechnology Information (NCBI) of the National Library of Medicine (NLM), an institute within the U.S. National Institutes of Health (NIH), was used to obtain chemical structure and pharmacological properties of PuA, as well as the ChEBI database (Kim *et al.*, 2016; Kim *et al.*, 2023).

# 2.2 Pharmacokinetic properties and drug likeness analysis

Swiss ADME and ProToxII were used to determine drug-likeness possibilities and toxicity properties of PuA, respectively (Daina *et al.*, 2017; Banerjee *et al.*, 2018; Daina *et al.*, 2019). The targets of punicic acid were identified using DIGEP-Pred (Prediction of drug-induced changes of gene expression profile) based on the structural formula of PuA (Lagunin *et al.*, 2013).

# 2.3 Prediction of targets by gene set enrichment analysis

GeneCards, The Human Gene Database, was used to evaluate probable interacting genes of PuA. Based on this database, top

interacting genes were analyzed using unique GeneCards identifiers (GC ids), provided by the GeneLoc Algorithm (Harel *et al.*, 2009; Fishilevich *et al.*, 2016). DisGeNET (version 7.0) database and the pharmacogenomics knowledge base (PharmGKB) were employed to reveal data about disease-associated genes and variants from multiple sources (Thorn *et al.*, 2013; Piñero *et al.*, 2020).

#### 2.4 Construction protein-protein interaction (PPI) network

STRING database and Cytoscape software were used for visualization of the role of probable interacting genes and proteins associated with PuA. PPI network mapping was conducted on punicic acid and protein targets using the Retrieval of Interacting Genes database with the species limited to "homo sapiens" and a confidence score > 0.4 (Wu *et al.*, 2009; Athanasios *et al.*, 2017).

# 2.5 KEGG enrichment analysis

KEGG (Kyoto Encyclopedia of Genes and Genomes) is an integrated database of genes and genomes used for mapping pathways at the molecular level. KEGG enrichment analysis was performed for the construction network regulated by PuA (Aoki-Kinoshita and Kanehisa, 2007; Kanehisa *et al.*, 2017).

## 3. Results

# 3.1 Chemical compositions and prediction of drug-induced changes

Punicic acid is also known as trichosanic acid or pumicate with a molecular formula  $C_{18}H_{30}O_2$  while its molar mass is 278.43 g/mol. PuA is a polyunsaturated fatty acid that is categorized as a conjugated linolenic acid, which is a polyunsaturated omega-6 and 18-carbon long fatty acid, with two CC double bonds at the 9- and 12-positions. Punicic acid is derived from linoleic acid (18:2 $\Delta$ cis9, cis12) by a fatty acid conjugate which converts a cis- $\Delta 12$  double bond into a conjugated trans-cis-double-bond system. The synonyms of PuA are trichosanoic acid, punicate, (9Z,11E,13Z)-octadeca-9,11,13trienoic acid, cis-9,trans-11,cis-13-Octadecatrienoic acid, eleostearic acid, (9E,11Z,13E)-9,11,13-Octadecatrienoic acid, (e,Z,e)-9,11,13-Octadecatrienoic acid, 9-trans, 11-cis, 13-trans-Octadecatrienoic acid, 9t,11C,13t-CLN, 9t,11C,13t-Conjugated linolenic acid, 9trans,11cis,13trans-Octadecatrienoic acid, C18:3 N-5 trans, 7 cis, 9 trans, Octadeca-9t,11C,13t-trienoic acid, Octadeca-9t,11C,13t-triensaeure, t9,C11,t13-CLN, t9,C11,t13-CLnA, t9,C11,t13-Conjugated linolenic acid, t9,C11,t13-Linolenic acid, and 9t,11C,13t-Linolenic acid. The chemical and molecular information of PuA obtained from ChEBI and PubChem were summarized in Table 1.

The prediction targets of PuA were identified using the prediction of drug-induced changes in gene expression profile of proteins at the pharmacological activity (Pa)>0.7. The findings regarding the prediction of drug-induced changes for PuA were summarized in Table 2 in which Pa (probability to be active) means the chance that PuA, whereas Pi (probability to be inactive) means the chance that PuA belongs to the subclass of inactive compounds. As presented in Table2, PuA was found to have remarkable biological activities including anticancer, antiobesity, antileukemic, antioxidant, anti-inflammatory, and antineoplastic. In fact, cyclooxygenase 1 inhibitor, hormone antagonist, phosphatidylglycerophosphatase inhibitor, alkylacetylglycerophosphatase inhibitor, mucomembranous protector, hydroxyls scavenger, metal chelator, and lipid metabolism regulatorwere determined as the most significant properties of PuA (Table 2).

# Table 1: Chemical and physicochemical properties of PuA

| IUPAC name              | (9Z,11E,13Z)-octadeca-9,11,13-trienoic acid                                                                                                                                                              |
|-------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ID                      | ChEBI: 8638 / PubChem CID: 5281126                                                                                                                                                                       |
| Chemical structure      | HO<br>O                                                                                                                                                                                                  |
| Name                    | Punicic acid                                                                                                                                                                                             |
| Synonyms                | punicate, trichosanoicacid, (9Z,11E,13Z)-octadeca-9,11,13-trienoic acid, octadeca-9c,11t,13c-trienoic acid, cis-9, trans-11, cis-13-Octadecatrienoic acid, 9-cis, 11-trans, 13-cis-octadecatrienoic acid |
| Formula                 | $C_{18}H_{30}O_2$                                                                                                                                                                                        |
| Net charge              | 0                                                                                                                                                                                                        |
| MW                      | 278.429 g/mol                                                                                                                                                                                            |
| Monoisotopic mass       | 278.224 g/mol                                                                                                                                                                                            |
| Hdon                    | 1                                                                                                                                                                                                        |
| Насс                    | 2                                                                                                                                                                                                        |
| Rbon                    | 13                                                                                                                                                                                                       |
| Melting point           | 44-45°C / 491.91°C at 760.00 mm Hg (est)                                                                                                                                                                 |
| W S                     | 0.024 mg/ml at 25°C                                                                                                                                                                                      |
| InChI                   | 1S/C18H30O2/c1-2-3-4-5-6-7-8-9-10-11-12-13-14-15-16-17-18(19)20/h5-10H,2-4,11-<br>17H2,1H3,(H,19,20)/b6-5-,8-7+,10-9-                                                                                    |
| SMILES                  | CCCC\C=C/C=C/C=C\CCCCCCC(O)=O                                                                                                                                                                            |
| <b>Canonical SMILES</b> | CCCC=CC=CC=CCCCCCC(=O)O                                                                                                                                                                                  |
| Isomeric SMILES         | CCCC/C=C\C=C\C=C/CCCCCCCC(=O)O                                                                                                                                                                           |
| Top chemical roles      | Acid, ligand, catalyst, reducing agent                                                                                                                                                                   |
| Top biological roles    | Antileukemic, anticancer, antiobesity, anti-inflammatory, antioxidant, and antineoplastic agent                                                                                                          |

WS = water solubility, Hacc = hydrogen bond acceptors, Hdon = hydrogen bond donors, MW = molecular weight, Rbon = rotatable bonds.

Table 2: Prediction of drug induced changes of gene expression profile for PuA at pharmacological activity

| Pa    | Pi    | Activity                                         |  |
|-------|-------|--------------------------------------------------|--|
| 0,977 | 0,001 | CYP2J substrate                                  |  |
| 0,970 | 0,001 | CYP2J2 substrate                                 |  |
| 0,951 | 0,001 | Phosphatidylglycerophosphatase inhibitor         |  |
| 0,950 | 0,002 | Acylcarnitinehydrolase inhibitor                 |  |
| 0,949 | 0,003 | Mucomembranous protector                         |  |
| 0,943 | 0,002 | Alkylacetylglycerophosphatase inhibitor          |  |
| 0,942 | 0,003 | Antieczematic                                    |  |
| 0,939 | 0,001 | All-trans-retinyl-palmitatehydrolase inhibitor   |  |
| 0,940 | 0,003 | Alkenylglycerophosphocholine hydrolase inhibitor |  |
| 0,935 | 0,003 | Acrocylindropepsin inhibitor                     |  |
| 0,935 | 0,003 | Chymosin inhibitor                               |  |

24

| 0,935 | 0,003 | Saccharopepsin inhibitor                                           |  |  |  |
|-------|-------|--------------------------------------------------------------------|--|--|--|
| 0,930 | 0,003 | G-protein-coupled receptorkinase inhibitor                         |  |  |  |
| 0,930 | 0,003 | Beta-adrenergic receptorkinase inhibitor                           |  |  |  |
| 0,925 | 0,002 | Carboxypeptidase Taq inhibitor                                     |  |  |  |
| 0,923 | 0,002 | Dextranase inhibitor                                               |  |  |  |
| 0,923 | 0,003 | Lipid metabolism regulator                                         |  |  |  |
| 0,921 | 0,003 | GST A substrate                                                    |  |  |  |
| 0,915 | 0,001 | CYP4A11 substrate                                                  |  |  |  |
| 0,916 | 0,003 | Lipoproteinlipase inhibitor                                        |  |  |  |
| 0,911 | 0,001 | Leukotriene-B4 20-monooxygenase inhibitor                          |  |  |  |
| 0,912 | 0,003 | Linoleatediolsynthase inhibitor                                    |  |  |  |
| 0,910 | 0,002 | Macrophagecolony stimulating factor agonist                        |  |  |  |
| 0,912 | 0,004 | Prostaglandin-E2 9-reductase inhibitor                             |  |  |  |
| 0,909 | 0,004 | Sugar-phosphatase inhibitor                                        |  |  |  |
| 0,909 | 0,005 | Polyporopepsin inhibitor                                           |  |  |  |
| 0,905 | 0,003 | Pullulanase inhibitor                                              |  |  |  |
| 0,904 | 0,003 | Phosphatidylcholine-retinol O-acyl transferase inhibitor           |  |  |  |
| 0,901 | 0,004 | Pro-opiomelanocort in converting enzyme inhibitor                  |  |  |  |
| 0,898 | 0,002 | CYP4A substrate                                                    |  |  |  |
| 0,898 | 0,003 | Sarcosineoxidase inhibitor                                         |  |  |  |
| 0,900 | 0,005 | Phobicdisorders treatment                                          |  |  |  |
| 0,899 | 0,005 | Ubiquinol-cytochrome-c reductase inhibitor                         |  |  |  |
| 0,892 | 0,003 | Glucan endo-1,3-beta-D-glucosidase inhibitor                       |  |  |  |
| 0,892 | 0,003 | Poly(alpha-L-guluronate) lyase inhibitor                           |  |  |  |
| 0,892 | 0,005 | Sphinganinekinase inhibitor                                        |  |  |  |
| 0,887 | 0,001 | BRAF expression inhibitor                                          |  |  |  |
| 0,887 | 0,003 | Methylamine-glutamate N-methyl transferase inhibitor               |  |  |  |
| 0,886 | 0,002 | Xylan endo-1,3-beta-xylosidase inhibitor                           |  |  |  |
| 0,886 | 0,003 | Exoribonuclease II inhibitor                                       |  |  |  |
| 0,884 | 0,002 | Glutarate-semialdehydede hydrogenase inhibitor                     |  |  |  |
| 0,884 | 0,003 | Phosphatidatephosphatase inhibitor                                 |  |  |  |
| 0,882 | 0,002 | Poly(beta-D-mannuronate) lyase inhibitor                           |  |  |  |
| 0,880 | 0,001 | Ethanolamine-phosphatecytidylyl transferase inhibitor              |  |  |  |
| 0,878 | 0,002 | Prostaglandin-A1 DELTA-isomerase inhibitor                         |  |  |  |
| 0,873 | 0,003 | D-lactaldehydedehydrogenase inhibitor                              |  |  |  |
| 0,870 | 0,001 | N-(long-chain-acyl)ethanol aminedeacylase inhibitor                |  |  |  |
| 0,869 | 0,002 | Phenylacetate-CoAligase inhibitor                                  |  |  |  |
| 0,862 | 0,001 | Plasmanylethanol aminedesaturase inhibitor                         |  |  |  |
| 0,861 | 0,001 | Linoleateisomerase inhibitor                                       |  |  |  |
| 0,863 | 0,003 | Gluconate 5-dehydrogenase inhibitor                                |  |  |  |
| 0,863 | 0,003 | Peptide-N4-(N-acetyl-beta-glucosaminyl)asparagineamidase inhibitor |  |  |  |
| 0,860 | 0,004 | Levanase inhibitor                                                 |  |  |  |

| 0,860 | 0,004 | Lysine 2,3-aminomutase inhibitor                          |  |  |  |
|-------|-------|-----------------------------------------------------------|--|--|--|
| 0,858 | 0,003 | Alcoholdehydrogenase (NADP+) inhibitor                    |  |  |  |
| 0,853 | 0,001 | CYP4A2 substrate                                          |  |  |  |
| 0,856 | 0,005 | Fucosterol-epoxidelyase inhibitor                         |  |  |  |
| 0,852 | 0,004 | Vasoprotector                                             |  |  |  |
| 0,848 | 0,002 | Alcohol O-acetyl transferase inhibitor                    |  |  |  |
| 0,844 | 0,004 | IgA-specificmetalloendopeptidase inhibitor                |  |  |  |
| 0,844 | 0,004 | Oxidoreductase inhibitor                                  |  |  |  |
| 0,841 | 0,004 | Acetylesterase inhibitor                                  |  |  |  |
| 0,838 | 0,004 | L-glucuronatereductase inhibitor                          |  |  |  |
| 0,835 | 0,001 | 15-Hydroxyprostaglandin-D dehydrogenase (NADP+) inhibitor |  |  |  |
| 0,837 | 0,004 | Fatty-acyl-CoAsynthase inhibitor                          |  |  |  |
| 0,844 | 0,013 | Methylenetetrahydrofolatereductase (NADPH) inhibitor      |  |  |  |
| 0,835 | 0,006 | Arginine 2-monooxygenase inhibitor                        |  |  |  |
| 0,832 | 0,003 | Aspartate-ammonialigase inhibitor                         |  |  |  |
| 0,831 | 0,003 | Antimutagenic                                             |  |  |  |
| 0,829 | 0,002 | Plateletaggregation stimulant                             |  |  |  |
| 0,828 | 0,003 | CYP2E1 inhibitor                                          |  |  |  |
| 0,831 | 0,007 | Protein-disulfidereductase (glutathione) inhibitor        |  |  |  |
| 0,836 | 0,012 | Benzoate-CoAligase inhibitor                              |  |  |  |
| 0,824 | 0,002 | Pectinlyase inhibitor                                     |  |  |  |
| 0,835 | 0,014 | Chlordeconereductase inhibitor                            |  |  |  |
| 0,837 | 0,017 | Testosterone 17beta-dehydrogenase (NADP+) inhibitor       |  |  |  |
| 0,822 | 0,002 | Protein-tyrosinesulfo transferase inhibitor               |  |  |  |
| 0,819 | 0,004 | Glucan 1,4-alpha-maltotriohydrolase inhibitor             |  |  |  |
| 0,818 | 0,003 | Alkenylglycerophosphoethanolamine hydrolase inhibitor     |  |  |  |
| 0,816 | 0,003 | N-formylmethionyl-peptidase inhibitor                     |  |  |  |
| 0,817 | 0,005 | Dimethylargininase inhibitor                              |  |  |  |
| 0,814 | 0,006 | Superoxidedismutase inhibitor                             |  |  |  |
| 0,804 | 0,002 | Peroxidasesubstrate                                       |  |  |  |
| 0,804 | 0,004 | Phenol O-methyl transferase inhibitor                     |  |  |  |
| 0,811 | 0,013 | Mucositis treatment                                       |  |  |  |
| 0,799 | 0,004 | HMOX1 expression enhancer                                 |  |  |  |
| 0,797 | 0,005 | Cutinase inhibitor                                        |  |  |  |
| 0,793 | 0,004 | Eyeirritation, inactive                                   |  |  |  |
| 0,793 | 0,004 | Rhamnulose-1-phosphate aldolase inhibitor                 |  |  |  |
| 0,791 | 0,003 | GABA aminotransferase inhibitor                           |  |  |  |
| 0,791 | 0,004 | Lactase inhibitor                                         |  |  |  |
| 0,815 | 0,029 | Aspulvinonedimethylallyl transferase inhibitor            |  |  |  |
| 0,787 | 0,002 | Phosphatidylinositoldiacylglycerol-lyase inhibitor        |  |  |  |
| 0,791 | 0,007 | Cl-transportingATPase inhibitor                           |  |  |  |
| 0,785 | 0,002 | Uroporphyrinogendecarboxylase inhibitor                   |  |  |  |

| 0,787 | 0,003 | Aminocarboxymuconate-semialdehydedecarboxylase inhibitor                      |  |  |  |
|-------|-------|-------------------------------------------------------------------------------|--|--|--|
| 0,787 | 0,004 | Ecdysone 20-monooxygenase inhibitor                                           |  |  |  |
| 0,786 | 0,004 | Reductant                                                                     |  |  |  |
| 0,795 | 0,014 | Protein-glutamatemethylesterase inhibitor                                     |  |  |  |
| 0,785 | 0,008 | NADPH-cytochrome-c2 reductase inhibitor                                       |  |  |  |
| 0,780 | 0,004 | EndopeptidaseSo inhibitor                                                     |  |  |  |
| 0,786 | 0,009 | Fragilysin inhibitor                                                          |  |  |  |
| 0,783 | 0,007 | IgA-specific serine endopeptidase inhibitor                                   |  |  |  |
| 0,785 | 0,009 | Fusarinine-C ornithinesterase inhibitor                                       |  |  |  |
| 0,777 | 0,003 | Aminoacylase inhibitor                                                        |  |  |  |
| 0,777 | 0,004 | Anthranilate-CoAligase inhibitor                                              |  |  |  |
| 0,774 | 0,002 | Flavin-containing mono oxygenase inhibitor                                    |  |  |  |
| 0,775 | 0,004 | Leukopoiesis stimulant                                                        |  |  |  |
| 0,786 | 0,015 | Taurinedehydrogenase inhibitor                                                |  |  |  |
| 0,773 | 0,003 | Gastrin inhibitor                                                             |  |  |  |
| 0,774 | 0,004 | Beta-carotene 15,15'-monooxygenase inhibitor                                  |  |  |  |
| 0,772 | 0,001 | Guanidinobutyrase inhibitor                                                   |  |  |  |
| 0,775 | 0,005 | Electron-transferring-flavoproteindehydrogenase inhibitor                     |  |  |  |
| 0,783 | 0,016 | Glycosylphosphatidylinositolphospholipase D inhibitor                         |  |  |  |
| 0,786 | 0,020 | Gluconate 2-dehydrogenase (acceptor) inhibitor                                |  |  |  |
| 0,774 | 0,007 | Creatininase inhibitor                                                        |  |  |  |
| 0,769 | 0,004 | Preneoplasticconditions treatment                                             |  |  |  |
| 0,766 | 0,002 | 2,3,4,5-Tetrahydropyridine-2,6-dicarboxylate N-succinyl transferase inhibitor |  |  |  |
| 0,770 | 0,006 | CYP3A1 substrate                                                              |  |  |  |
| 0,767 | 0,005 | Lysostaphin inhibitor                                                         |  |  |  |
| 0,770 | 0,008 | Venombin AB inhibitor                                                         |  |  |  |
| 0,776 | 0,014 | Feruloylesterase inhibitor                                                    |  |  |  |
| 0,766 | 0,005 | Urethanase inhibitor                                                          |  |  |  |
| 0,765 | 0,004 | Allyl-alcoholde hydrogenase inhibitor                                         |  |  |  |
| 0,763 | 0,003 | Hydroxylamineoxidase inhibitor                                                |  |  |  |
| 0,766 | 0,007 | CYP2C8 substrate                                                              |  |  |  |
| 0,761 | 0,004 | Adenomatouspolyposis treatment                                                |  |  |  |
| 0,761 | 0,005 | 1,4-Lactonase inhibitor                                                       |  |  |  |
| 0,758 | 0,002 | Nitrilehydratase inhibitor                                                    |  |  |  |
| 0,758 | 0,002 | CYP2E1 inducer                                                                |  |  |  |
| 0,755 | 0,001 | Carboxy-cis,cis-muconatecyclase inhibitor                                     |  |  |  |
| 0,759 | 0,005 | CYP2E1 substrate                                                              |  |  |  |
| 0,756 | 0,003 | Angiogenesis stimulant                                                        |  |  |  |
| 0,758 | 0,005 | NADH kinase inhibitor                                                         |  |  |  |
| 0,758 | 0,005 | Antisecretoric                                                                |  |  |  |
| 0,757 | 0,006 | Phosphatidylserinedecarboxylase inhibitor                                     |  |  |  |
| 0,756 | 0,005 | Cholesterol antagonist                                                        |  |  |  |

| 0,764 | 0,015 | Glutamylendopeptidase II inhibitor                                   |  |  |  |
|-------|-------|----------------------------------------------------------------------|--|--|--|
| 0,771 | 0,024 | Antiseborrheic                                                       |  |  |  |
| 0,750 | 0,003 | Cytoprotectant                                                       |  |  |  |
| 0,751 | 0,005 | TNF expression inhibitor                                             |  |  |  |
| 0,749 | 0,003 | Alaninetransaminase inhibitor                                        |  |  |  |
| 0,749 | 0,004 | Aldehydedehydrogenase (NADP+) inhibitor                              |  |  |  |
| 0,751 | 0,006 | CYP2E substrate                                                      |  |  |  |
| 0,747 | 0,003 | Licheninase inhibitor                                                |  |  |  |
| 0,761 | 0,018 | NADPH peroxidase inhibitor                                           |  |  |  |
| 0,746 | 0,004 | Hydroxylaminereductase (NADH) inhibitor                              |  |  |  |
| 0,745 | 0,002 | Prostaglandin E1 antagonist                                          |  |  |  |
| 0,745 | 0,003 | Dolichyl-phosphatase inhibitor                                       |  |  |  |
| 0,755 | 0,012 | Ribulose-phosphate 3-epimerase inhibitor                             |  |  |  |
| 0,745 | 0,003 | Dolichyl-diphosphooligosaccharide-protein glycotransferase inhibitor |  |  |  |
| 0,745 | 0,003 | 4-Hydroxybenzoate nonaprenyl transferase inhibitor                   |  |  |  |
| 0,755 | 0,013 | 5-O-(4-coumaroyl)-D-quinate 3'-monooxygenase inhibitor               |  |  |  |
| 0,759 | 0,018 | Membranepermeability inhibitor                                       |  |  |  |
| 0,752 | 0,012 | Pseudolysin inhibitor                                                |  |  |  |
| 0,756 | 0,016 | TP53 expression enhancer                                             |  |  |  |
| 0,745 | 0,007 | Glutamine-phenylpyruvate transaminase inhibitor                      |  |  |  |
| 0,740 | 0,004 | Procollagen N-endopeptidase inhibitor                                |  |  |  |
| 0,742 | 0,009 | Polyamine-transportingATPase inhibitor                               |  |  |  |
| 0,733 | 0,001 | Leukotriene-C4 synthase inhibitor                                    |  |  |  |
| 0,735 | 0,003 | 1-Alkylglycerophosphocholine O-acetyl transferase inhibitor          |  |  |  |
| 0,736 | 0,005 | Biotinidase inhibitor                                                |  |  |  |
| 0,733 | 0,004 | CYP2C8 inhibitor                                                     |  |  |  |
| 0,740 | 0,011 | Arylsulfatesulfo transferase inhibitor                               |  |  |  |
| 0,730 | 0,003 | 2-Oxoglutarate decarboxylase inhibitor                               |  |  |  |
| 0,737 | 0,011 | CYP2B6 substrate                                                     |  |  |  |
| 0,731 | 0,005 | Prenyl-diphosphatase inhibitor                                       |  |  |  |
| 0,730 | 0,004 | 2-Haloacid dehalogenase (configuration-inverting) inhibitor          |  |  |  |
| 0,729 | 0,003 | Guanidinoacetase inhibitor                                           |  |  |  |
| 0,727 | 0,002 | Creatinase inhibitor                                                 |  |  |  |
| 0,727 | 0,004 | 4-Hydroxyglutamate transaminase inhibitor                            |  |  |  |
| 0,727 | 0,004 | Nitritereductase (NO-forming) inhibitor                              |  |  |  |
| 0,728 | 0,007 | Vasodilator, peripheral                                              |  |  |  |
| 0,723 | 0,004 | Aspergillopepsin I inhibitor                                         |  |  |  |
| 0,721 | 0,003 | Sclerosant                                                           |  |  |  |
| 0,763 | 0,045 | CYP2C12 substrate                                                    |  |  |  |
| 0,720 | 0,002 | Antiinflammatory, intestinal                                         |  |  |  |
| 0,720 | 0,003 | Peptidoglycanglycosyl transferase inhibitor                          |  |  |  |
| 0,732 | 0,016 | Omptininhibitor                                                      |  |  |  |

| 0,722 | 0,007 | UGT1A9 substrate                                               |  |  |  |
|-------|-------|----------------------------------------------------------------|--|--|--|
| 0,720 | 0,005 | Tprproteinase (Porphyromonasgingivalis) inhibitor              |  |  |  |
| 0,719 | 0,004 | Protein-Npi-phosphohistidine-sugarphosphotransferase inhibitor |  |  |  |
| 0,719 | 0,004 | Cyclomaltodextrinase inhibitor                                 |  |  |  |
| 0,719 | 0,005 | Coccolysin inhibitor                                           |  |  |  |
| 0,723 | 0,009 | Radioprotector                                                 |  |  |  |
| 0,716 | 0,002 | CYP4B substrate                                                |  |  |  |
| 0,719 | 0,006 | Trimethylamine-oxidealdolase inhibitor                         |  |  |  |
| 0,722 | 0,009 | Formaldehydetransketolase inhibitor                            |  |  |  |
| 0,715 | 0,003 | Plateletadhesion inhibitor                                     |  |  |  |
| 0,717 | 0,008 | Methylumbelliferyl-acetatedeacetylase inhibitor                |  |  |  |
| 0,712 | 0,003 | Catalase inhibitor                                             |  |  |  |
| 0,709 | 0,001 | Cyclooxygenase 1 substrate                                     |  |  |  |
| 0,753 | 0,045 | Membraneintegrityagonist                                       |  |  |  |
| 0,710 | 0,003 | 3-Oxoadipate enol-lactonase inhibitor                          |  |  |  |
| 0,711 | 0,004 | Galactolipase inhibitor                                        |  |  |  |
| 0,710 | 0,003 | Carnosinesynthase inhibitor                                    |  |  |  |
| 0,712 | 0,006 | 3-Phytase inhibitor                                            |  |  |  |
| 0,707 | 0,002 | Oxidizingagent                                                 |  |  |  |
| 0,714 | 0,009 | N-benzyloxycarbonylglycine hydrolase inhibitor                 |  |  |  |
| 0,708 | 0,003 | Phosphoenolpyruvate-protein phosphotransferase inhibitor       |  |  |  |
| 0,710 | 0,005 | Shikimate O-hydroxycinnamoyl transferase inhibitor             |  |  |  |
| 0,717 | 0,013 | 2-Hydroxyquinoline 8-monooxygenase inhibitor                   |  |  |  |
| 0,706 | 0,002 | Thiosulfatesulfurtransferase inhibitor                         |  |  |  |
| 0,705 | 0,002 | (S)-2-hydroxy-acid oxidase inhibitor                           |  |  |  |
| 0,706 | 0,004 | Vitamin-K-epoxidereductase (warfarin-insensitive) inhibitor    |  |  |  |
| 0,706 | 0,004 | Pyruvatedehydrogenase (lipoamide) inhibitor                    |  |  |  |
| 0,705 | 0,003 | Acyl-CoAhydrolase inhibitor                                    |  |  |  |
| 0,705 | 0,003 | Palmitoyl-CoAhydrolase inhibitor                               |  |  |  |
| 0,706 | 0,005 | Arylmalonatedecarboxylase inhibitor                            |  |  |  |
| 0,716 | 0,015 | Peptidyl-dipeptidaseDcp inhibitor                              |  |  |  |
| 0,702 | 0,002 | Carnitine 3-dehydrogenase inhibitor                            |  |  |  |
| 0,712 | 0,013 | Phthalate 4,5-dioxygenase inhibitor                            |  |  |  |
| 0,705 | 0,006 | Phosphoinositide 5-phosphatase inhibitor                       |  |  |  |
| 0,711 | 0,013 | ProteasomeATPase inhibitor                                     |  |  |  |
| 0,702 | 0,004 | Phosphatidylcholine-sterol O-acyltransferase inhibitor         |  |  |  |
| 0,701 | 0,004 | 2-Hydroxy-3-oxoadipate synthase inhibitor                      |  |  |  |
| 0,703 | 0,008 | Antithrombotic                                                 |  |  |  |
| 0,713 | 0,018 | Fibrinolytic                                                   |  |  |  |
| 0,701 | 0,008 | Antihypoxic                                                    |  |  |  |
| 0,706 | 0,016 | UDP-N-acetylglucosamine 4-epimerase inhibitor                  |  |  |  |

# 3.2 Pharmacokinetic properties and drug-likeness analysis

The relevant drug-likeness scores obtained from SwissADME were detailed in Table 3. SwissADME predicted pharmacokinetics of the

PuA, including topological polar surface Lipinski score, natural product score, gastrointestinal absorption, drug permeability, bloodbrain barrier, plasma protein permeability, drug excretion long halflife, and clearance were shown in Table 3.

| DLS                           | -0.30                                     |
|-------------------------------|-------------------------------------------|
| TPSA (-2)                     | 37.3 -2                                   |
| Lipinski                      | Yes                                       |
| Bioavailability score         | 0.55                                      |
| NPS                           | 1.275                                     |
| Glabsorpsion                  | High                                      |
| Coco-2 Permeability           | -4826                                     |
| <b>MDCK</b> Permeability      | 4e-05                                     |
| BBB permeant                  | Yes                                       |
| PPB                           | 99.26%                                    |
| T <sub>1</sub> / <sub>2</sub> | 0.768                                     |
| CL                            | 4.689                                     |
| MolLogP                       | 6.39                                      |
| MolLogS                       | -5.61 (in Log(moles/l)) 0.68<br>(in mg/l) |
| MolLogD                       | 3.043                                     |

Table 3: Drug-likeness and chemical ADMET properties of PuA

DLS = drug-likeness score, TPSA = topological polar surface area, NPS = natural product score, GI = gastrointestinal absorption,MDCK = mardin-darby canine kidney, BBB = blood-brain barrier,PPD = plasma protein permeability, $T_1/_2$  = excretion long half-life, CL = clearance.

As shown in Figure 1, PuAis predicted to possess a good drug-likeness activity with a score of -0.30, as well as good brain barrier permeability (BBB score = 4.40) and gastrointestinal adsorption. In addition, LogP, an octaol-

water partition coeffic ient and one of the important components of Lipinski's Rule of 5, was determined as 6.39 which means PuA can be an oral drug. *In silico* drug-likeness possibilities of PuAare given in Figure 1.



Figure 1: In silico drug-likeness model of PuA.

*In silico* toxicological parameters of PuA were evaluated using ProTox-II software, and the results are presented in Table 4. Oral toxicity prediction results were determined as  $LD_{50}$  (lethal dose) values in 3200 mg/kg body weight and the predicted toxicity class of PuA was

 Table 4: Oral toxicity prediction results for PuA

5 with 79.13% average similarity and %69.26 prediction accuracy. According to the globally harmonized system of classification of labeling of chemicals, the results showed that PuA has no observable toxicity, including carcinogenicity, cytotoxicity, hepatotoxicity, immunotoxicity, and mutagenicity (Table 4).

| Classification                            | Target                                                  | Prediction | Probability |
|-------------------------------------------|---------------------------------------------------------|------------|-------------|
| Organ toxicity                            | Hepatotoxicity                                          | Inactive   | 0.59        |
| Toxicity end points                       | Carcinogenicity                                         | Inactive   | 0.65        |
| Toxicity end points                       | Immunotoxicity                                          | Inactive   | 0.98        |
| Toxicity end points                       | Mutagenicity                                            | Inactive   | 0.93        |
| Toxicity end points                       | Cytotoxicity                                            | Inactive   | 0.70        |
| Tox21-Nuclear receptor signaling pathways | Aryl hydrocarbon receptor (AhR)                         | Inactive   | 0.99        |
| Tox21-Nuclear receptor signaling pathways | Androgen receptor (AR)                                  | Inactive   | 1.0         |
| Tox21-Nuclear receptor signaling pathways | Androgen receptor ligand binding domain (AR-LBD)        | Inactive   | 1.0         |
| Tox21-Nuclear receptor signaling pathways | Aromatase                                               | Inactive   | 1.0         |
| Tox21-Nuclear receptor signaling pathways | Estrogen receptor alpha (ER)                            | Inactive   | 0.99        |
| Tox21-Nuclear receptor signaling pathways | Estrogen receptor ligand binding domain (ER-LBD)        | Inactive   | 1.0         |
| Tox21-Nuclear receptor signaling pathways | Peroxisome proliferator activated receptor gamma        | Active     | 0.59        |
|                                           | (PPAR-Gamma)                                            |            |             |
| Tox21-Stress response pathways            | Nuclear factor (erythroid-derived 2)-like 2/antioxidant | Active     | 0.67        |
|                                           | responsive element (nrf2/ARE)                           |            |             |
| Tox21-Stress response pathways            | Heat shock factor response element (HSE)                | Active     | 0.67        |
| Tox21-Stress response pathways            | Mitochondrial membrane potential (MMP)                  | Inactive   | 0.99        |
| Tox21-Stress response pathways            | Phosphoprotein (Tumor Suppressor) p53                   | Inactive   | 0.99        |
| Tox21-Stress response pathways            | ATPase family AAA domain-containing protein 5 (ATAD5)   | Inactive   | 1.0         |

# 3.3 Enrichment analysis of protein-based prediction

The gene targets of PuA were collected using Gene Cards, DisGeNET, Pharm GKB, and SMILES into Swiss target prediction.

Based on the prediction results, a total of thirty-six genes were identified as the intersection targets. The detailed information and target class of the protein targets of PuA was given in Table 5.

```
Table 5: Protein based prediction results for PuA
```

| Description                                    | Symbol | UniProt ID | Protein class                  |
|------------------------------------------------|--------|------------|--------------------------------|
| ATP-Binding cassette sub-family G Member 1     | ABCG1  | P45844     | transporter                    |
| Acetylcholine receptor subunit epsilon         | ACHE   | Q04844     | transporter and hydrolase      |
| Catalase                                       | CAT    | P04040     | oxidoreductase and peroxidase  |
| C-C Motif chemokine ligand2                    | CCL2   | P13500     | cytokine                       |
| Monocyte differentiation antigen CD14          | CD14   | P08571     | transporter and receptor       |
| CD83 antigen                                   | CD83   | Q01151     | receptor                       |
| T-Lymphocyte activation antigen CD86           | CD86   | P42081     | receptor                       |
| Collagen type I alpha-1 chain                  | COL1A1 | P02452     | metal-binding                  |
| Glyceraldehyde-3-phosphate dehydrogenase       | GAPDH  | P04406     | oxidoreductase and transferase |
| Growthhormone 1 (somatotropin)                 | GH1    | P01241     | hormone                        |
| Glutathione disulfide reductase, mitochondrial | GSR    | P00390     | oxidoreductase                 |

32

| Hemoglobin subunit alpha                                          | HBA1   | P69905 | transporter                       |
|-------------------------------------------------------------------|--------|--------|-----------------------------------|
| DNA-Binding protein inhibitor ID-1                                | ID1    | P41134 | repressor                         |
| Interleukin-6                                                     | IL6    | P05231 | cytokine                          |
| Involucrin                                                        | IVL    | P07476 | transglutaminase and keratinocyte |
| E3 Ubiquitin-protein ligase MDM2                                  | MDM2   | Q00987 | transferase                       |
| Matrix metalloproteinase 2                                        | MMP2   | P08253 | protease                          |
| Nuclear receptor coactivator 2                                    | NCOA2  | Q15596 | activator                         |
| Serum paraoxonase/arylesterase 1                                  | PON1   | P27169 | hydrolase                         |
| Peroxisome proliferator-activated receptor alpha                  | PPARA  | Q07869 | nuclear receptor                  |
| Peroxisome proliferator-activated receptor delta                  | PPARD  | Q03181 | nuclear receptor                  |
| Peroxisome proliferator-activated receptor Gamma                  | PPARG  | P37231 | nuclear receptor                  |
| Protein kinase C alpha                                            | PRKCA  | P17252 | kinase and transferase            |
| Prostaglandin G/H synthase 1                                      | PTGS1  | P23219 | oxidoreductase and peroxidase     |
| Prostaglandin G/H synthase 2                                      | PTGS2  | P35354 | oxidoreductase and peroxidase     |
| RacFamily small GTPase 1                                          | RAC1   | P63000 | hydrolase                         |
| Retinoic acid receptor alpha                                      | RARA   | P10276 | nuclear receptor                  |
| P-Selectin                                                        | SELP   | P16109 | metal-binding                     |
| Solute carrier family 2, facilitated glucose transporter member 4 | SLC2A4 | P14672 | transporter                       |
| Superoxide dismutase 1                                            | SOD1   | P00441 | oxidoreductase                    |
| Serine-threonine kinase receptor-associated protein               | STRAP  | Q9Y3F4 | kinase                            |
| Transferrin receptor protein 1                                    | TFRC   | P02786 | receptor                          |
| TIMP Metalloproteinase inhibitor 1                                | TIMP1  | P01033 | protease                          |
| DNATopoisomeraseII alpha                                          | TOP2A  | P11388 | isomerase                         |
| Vitamin D3 receptor                                               | VDR    | P11473 | nuclea rreceptor                  |
| Vimentin                                                          | VIM    | P08670 | structural protein, cytoskeleton  |

# 3.4 Results of protein-protein interaction network

The relationship of a total of 36 proteins between each other was constructed from STRING database with PPI enrichment p-value< 1.0e-16 (FDR<0.05) and a confidence score < 0.4. This enrichment

value means that these proteins have more interactions among themselves than what would be expected for a random set of proteins of the same size and degree distribution drawn from the genome (Figure 2).



Figure 2: Protein-protein interaction networks of PuA.

As can be seen in the Figure 2, a higher degree value node represented significant targets of punicic acid. While PTGS2 (prostaglandin G/H synthase 2), IL6 (interleukin-6), PPARG (peroxisome proliferator-activated receptor gamma), GSR (glutathionedisulfide reductase), PPARA (peroxisome proliferator-activated receptor alpha), PPARG (peroxisomeproliferator-activated receptor gamma), CAT (catalase), SLC2A4 (solute carrier family 2, facilitated glucose transporter member4), CCL2 (C-C motif chemokine ligand2), and GAPDH (glyceraldehyde-3-phosphate dehydrogenase) were selected as core targets in the PPI network, it was determined that proteins such as

GH1 (growth hormone1), HBA1 (hemoglobin subunit alpha), IVL (involucrin), and STRAP (serine-threoninekinase receptor-associated protein) have not interacted with other proteins in the network.

# 3.5 Results of KEGG enrichment pathway

According to the KEGG enrichment pathway analyses, a total of 129 distinct pathways were identified as the probably modulated pathways by PuA. A network corresponding to 36 protein targets is schematized in Figure 4, summarizing the correlations between the major pathways listed in the enrichment network.





As presented in Figure 4, several target proteins are simultaneously involved in one pathway, while one target protein is also present in many pathways. Pathways in cancer, (FDR=0.00018), hypoxiainducible factor 1 (HIF-1) signaling pathway (FDR=3.90e-05), transcriptional misregulation in cancer (FDR=0.00019), advanced glycation endproducts-receptor for advanced glycation end products (AGE-RAGE) signaling in diabetic complications (FDR=0.00020), fork head box O (FOXO) signaling pathway (FDR=0.00053), microRNAs in cancer (FDR=0.0013), human cytomegalo virus infection (FDR=0.0041), PI3K-Akt signaling pathway (FDR=0.0166), amoebiasis (FDR=0.0031), thyroid hormone signaling pathway (FDR=0.0047), peroxisome proliferator-activated receptors (PPAR) signaling pathway (FDR=0.0139), and interleukin-17 (IL-17) signaling pathway (FDR=0.0176) were detected as the top pathways associated with PuA-regulated proteins with the lowest false discovery rate (FDR<0.05) (Figure 4). Furthermore, nine of these proteins, including MMP2, RARA, MDM2, NCOA3, PPARG, PPARD, PTGS2, IL6, and PRKCA were found to involve in pathways in cancer, while the other groups of proteins including TIMP1, GAPDH, NCOA3, TFRC, IL6, PRKCA were found to involve in hypoxia-inducible factor 1 (HIF-1) signaling pathway.

# 4. Discussion

Punicic acid, a long-chain conjugated linolenic acid found naturally in pomegranate seed oil, bitter gourd seed oil, and snake gourd seed oil, has been shown to have anti-inflammatory and antioxidant properties. In recent years, numerous in vivo and in vitro studies have focused on health benefits of PuA and its potential role in the prevention and treatment of several diseases, including obesity, diabetes, metabolic syndrome, cardiovascular disease, cancer, and neurodegenerative disorders. Research has also suggested that PuA may play a role in modulating immune function and improving cognitive function. Additionally, studies have demonstrated that PuA may be beneficial for skin health by helping to reduce wrinkles and fine lines. The potential therapeutic effects of PuA are still being explored; however, these promising results suggest that it could have wide-ranging applications as a functional food ingredient or dietary supplement in the future (Aruna et al., 2016; Shabbir et al., 2017; Franczyk - Zarów et al., 2023).

In this study, the pharmacokinetic properties and toxicity of PuA were revealed using electronic databases. PuA compliance with Lipinski rule of 5, and with a higher LD<sub>50</sub> value. Based on the literature survey, there is limited research available on the in vivo and in vitro toxicity of PuA. There have been several studies conducted on the in vivo and in vitro toxicity of PuA. In vitro studies have shown that punicic acid has anti-inflammatory and antioxidant properties, making it a potential therapeutic agent for various diseases. However, in vivo studies have reported mixed results regarding its toxicity. Some animal studies have suggested that high doses of PuA may cause damage to the liver and kidneys, while others have found no adverse effects even at high doses (Meerts at el., 2009; Bassaganya Riera et al., 2011; Holic et al., 2018). Studies have shown that PuA, a fatty acid found in pomegranate seed oil, exhibits low toxicity in both in vivo and in vitro studies. In an in vivo study conducted on rats, it was observed that even at high doses of PuA, there were no adverse effects on the animals' body weight or organ function. Similarly, in vitro studies on human cells have shown that PuA does not cause any significant cytotoxicity or genotoxicity. In fact, some studies suggest that PuA may even have potential health benefits due to its anti-inflammatory and antioxidant properties (Boroushaki et al., 2016; Mota Ferreira *et al.*, 2016; Paul and Radhakrishnan, 2020). More research is needed to fully understand the potential benefits and risks of punicic acid, but so far, the evidence suggests that it may hold promise as a natural remedy for certain health conditions.

PPI analyses were conducted to determine top target proteins regulated by PuA and PTGS2, IL6, PPARG, GSR, PPARA, PPARG, CAT, SLC2A4, CCL2, and GAPDH were selected as core targets in the PPI network. In addition, target signaling pathways modulated by PuA were detected using KEGG enrichment and a total of 129 different signaling pathways was identified as possible pathways in this research. PuA is a bioactive compound and has been shown to have various health benefits by in vivo and in vitro studies. . In agreement with the findings from this network-based research, previous reports have also explored the molecular signaling pathways involved in the biological effects of PuA, including the inhibition of NF-kB, PI3K/Akt, and MAPK pathways. In vitro studies have further elucidated the mechanisms of PuA action, showing that it can induce apoptosis and cell cycle arrest in cancer cells (Mete et al., 2019; Franczyk-Zarów et al., 2023). In addition, research has shown that punicacid can modulate various molecular signaling pathways involved in the prevention of neurode generation, including reducing inflammation and oxidative stress via peroxisome proliferatoractivated receptor (PPAR)s and high-densitylipoprotein (HDL) associated paraoxonase 1 (PON1), as well as promoting lipid metabolism and syna pticplasticity through calpains and glucose metabolism with glucose transporter type 4 (GLUT4). PuA has also been found to have anti-apoptotic effects, which can help prevent the death of neurons. Further more, studies have demonstrated that PuA can improve cognitive function in animal models of neurode generative diseases, such as Alzheimer's and Parkinson's disease (Shabbir et al., 2017; Guerra-Vázquez et al., 2022).

The investigation of pharmaceutical properties and the drug-likeness score of PuA using bioinformatics tools is an important step towards understanding the potential of this compound as a drug candidate. The use of bioinformatics tools such as molecular docking, ADMET predictions, and drug-likeness score calculations helped to assess the feasibility of PuA as a drug molecule. The results of this investigation showed that PuA has good drug-likeness properties, including good solubility, low toxicity, and high bioavailability. Additionally, the network-based pharmacological studies revealed that PuA has a strong binding affinity towards certain target proteins, indicating its potential as a therapeutic agent. Overall, this study highlights the importance of using bioinformatics tools to evaluate the pharmaceutical properties of natural compounds like PuA and provides valuable insights into the potential use of this molecule in drug development. In other words, one way to assess the potential therapeutic benefits of PuA is through the use of drug signature score analysis. This method measures the similarity between the gene expression profiles of cells treated with PuA and those of cells treated with known drugs with established pharmacological properties. Studies have shown that PuA has a high drug signature score for agents that have antioxidant and anti-inflammatory properties, suggesting that it may have similar effects. However, more research is needed to fully understand the potential benefits and risks associated with the use of PuA and potential clinical applications.

# 5. Conclusion

In conclusion, the investigation of pharmaceutical properties and the drug-likeness score of PuA using bioinformatics tools has provided valuable insights into its potential as a drug candidate. The results of the study suggest that PuA has favorable pharmacokinetic properties and a high drug-likeness score, indicating that it may have good bioavailability, permeability, and metabolic stability in the body. Furthermore, the findings suggest that PuA may have potential therapeutic applications in the treatment of various diseases, including cancer, inflammation, and metabolic disorders. Overall, this study highlights the importance of using bioinformatics tools to identify potential drug candidates and underscores the need for further research to fully explore the pharmacological potential of PuA.

# **Conflict of interest**

The authors declare no conflicts of interest relevant to this article.

#### References

- Aoki-Kinoshita, K. F. and Kanchisa, M. (2007). Gene annotation and pathway mapping in KEGG. In Comparative genomics. (pp:71-91). Humana Press.
- Aruna, P.; Venkataramanamma, D.; Singh, A. K. and Singh, R. P. (2016). Health benefits of punicicacid: A review. Comprehensive Reviews in Food Science and Food Safety, 15(1):16-27.
- Athanasios, A.; Charalampos, V. and Vasileios, T. (2017). Protein-protein interaction (PPI) network: Recent advances in drug discovery. Current Drug Metabolism, 18(1):5-10.
- Banerjee, P.; Eckert, A. O.; Schrey, A. K. and Preissner, R. (2018). ProTox-II: A webserver for the prediction of toxicity of chemicals. Nucleic Acids Research, 46(W1):W257-W263.
- Bassaganya-Riera, J.; DiGuardo, M.; Climent, M.; Vives, C.; Carbo, A.; Jouni, Z. E.; and Hontecillas, R. (2011). Activation of PPARã and α by dietary punicic acid a melio rates intestinal inflammation in mice. British Journal of Nutrition, 106(6):878-886.
- Berger, S. I. and Iyengar, R. (2009). Network analyses in systems pharmacology. Bioinformatics, 25(19):2466-2472.
- Boroushaki, M. T.; Mollazadeh, H. And Afshari, A. R. (2016). Pomegranate seed oil: A comprehensive review on its the rapeutic effects. Int. J. Pharm. Sci. Rev. Res., 7(2):430.
- Daina, A.; Michielin, O. and Zoete, V. (2019). Swiss Target Prediction: Updated data and new features for efficient prediction of protein targets of small molecules. Nucleic Acids Research, 47(W1), W357-W364.
- Daina, A.; Michielin, O. and Zoete, V. (2017). Swiss ADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scientific Reports, 7(1):42717.
- Epifano, F.; Genovese, S.; Menghini, L. and Curini, M. (2007). Chemistry and pharmacology of oxyprenylated secondary plant metabolites. Phytochemistry, 68(7):939-953.
- Fishilevich, S.; Zimmerman, S.; Kohn, A.; Iny Stein, T.; Olender, T.; Kolker, E. and Lancet, D. (2016). Genic insights from integrated human proteomics in GeneCards. Database, pp:16.
- Franczyk-Zarów, M.; Tarko, T.; Drahun-Misztal, A.; Czyzynska-Cichon, I.; Kus, E. and Kostogrys, R. B. (2023). Pomegranate seed oil as a source of conjugated linolenic acid (CLnA) Has no effect on atherosclerosis development but improves lipid profile and affects the expression of lipid metabolism Genes in apoE/LDLR"/" Mice. International Journal of MolecularSciences, 24(2):1737.

- Gezici, S. and Sekeroglu N. (2022). Medicinal plants and phytochemicals of potential importance in the developmental process and treatment of alzheimer's disease. Hacettepe University Journal of the Faculty of Pharmacy, 42(2):121-133.
- Gezici, S. and Sekeroglu, N. (2021a). Network-based bioinformatics analyses on molecular pathways and pharmacological properties of oleuropein. Ann. Phytomed., 10(2):223-232.
- Gezici, S. and Sekeroglu N. (2021b). Bioinformatics analyses on molecular pathways and pharmacological properties of Glabridin. International Journal of Agriculture Environment and Food Sciences, 5(4):628-639.
- Gezici, S. and Sekeroglu, N. (2019). Neuroprotective potential and phytochemical composition of acorn fruits. Industrial Crops and Products, 128:13-17.
- Guerra-Vázquez, C. M.; Martínez-Ávila, M.; Guajardo-Flores, D. And Antunes-Ricardo, M. (2022). Punicic acid and its role in the prevention of neurological disorders: A review. Foods, 11(3):252.
- Harel, A.; Inger, A.; Stelzer, G.; Strichman-Almashanu, L.; Dalah, I.; Safran, M. and Lancet, D. (2009). GIFtS: Annotation landscape analysis with GeneCards. BMC Bioinformatics, 10(1):1-11.
- Hastings, J.; Owen, G.; Dekker, A.; Ennis, M.; Kale, N.; Muthukrishnan, V. and Steinbeck, C. (2016). ChEBI in 2016: Improved services and an expanding collection of metabolites. Nucleic Acids Research, 44(D1):D1214-D1219.
- Holic, R.; Xu, Y.; Caldo, K. M. P.; Singer, S. D.; Field, C. J.; Weselake, R. J. and Chen, G. (2018). Bioactivity and biotechnological production of punicic acid. Applied Microbiology and Biotechnology, 102:3537-3549.
- Hussein, R. A. and El-Anssary, A. A. (2019). Plants secondary metabolites: The key drivers of the pharmacological actions of medicinal plants. Herbal Medicine, 1(3):10-20.
- Kanchisa, M.; Furumichi, M.; Tanabe, M.; Sato, Y. and Morishima, K. (2017). KEGG: New perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Research, 45(D1):D353-D361.
- Khajebishak, Y.; Payahoo, L.; Alivand, M. and Alipour, B. (2019). Punicic acid: A potential compound of pomegranate seed oil in Type 2 diabetes mellitus management. Journal of Cellular Physiology, 234(3):2112-2120.
- Kim, S.; Chen, J.; Cheng, T.; Gindulyte, A.; He, J.; He, S. and Bolton, E. E. (2023). PubChem 2023 update. Nucleic Acids Research, 51(D1):D1373-D1380.
- Kim, S.; Thiessen, P.A.; Bolton, E. E.; Chen, J.; Fu, G.; Gindulyte, A. and Bryant, S.
   H. (2016). Pub Chem substance and compound databases. Nucleic Acids Research, 44(D1):D1202-D1213.
- Kumar, S.; Gezici, S.; Sekeroglu, N.; Atanasov, A. G. and Singla, R. K. (2023). Natural products based management of neurological disorders: Mechanisticin sight and translational informatics approach. Frontiers in Pharmacology, 14:613.
- Lagunin, A.; Ivanov, S.; Rudik, A.; Filimonov, D.; Poroikov, V. and DIGEP-Pred (2013). Web service for *in silico* prediction of drug-induced gene expression profiles based on structural formula. Bioinformatics, 29(16): 2062e3.
- Meerts, I. A. T. M.; Verspeek-Rip, C. M.; Buskens, C. A. F.; Keizer, H. G; Bassaganya-Riera, J.; Jouni, Z. E. and Van de Waart, E. J. (2009). Toxicological evaluation of pomegranate seed oil. Food and Chemical Toxicology, 47(6):1085-1092.
- Mete, M.; Unsal, U. U.; Aydemir, I.; Sönmez, P. K. and Tuglu, M. I. (2019). Punicicacid inhibits glioblastomamigration and proliferation via the PI3K/ AKT1/mTOR signaling pathway. Anticancer Agents in Medicinal Chemistry (formerly current medicinal chemistry anticancer agents), 19(9):1120-1131.

#### 36

- Mota Ferreira, L.; Gehrcke, M.; Ferrari Cervi, V.; Eliete Rodrigues Bitencourt, P.; Ferreira da Silveira, E.; Hofstatter Azambuja, J. and Cruz, L. (2016). Pomegranate seed oil nanoe mulsions withselective antiglioma activity: Optimization and evaluation of cytotoxicity, genotoxicity and oxidative effects on mononuclearcells. Pharmaceutical Biology, 54(12):2968-2977.
- Oulas, A.; Minadakis, G.; Zachariou, M.; Sokratous, K.; Bourdakou, M. M. and Spyrou, G. M. (2019). Systems bioinformatics: increasing precision of computational diagnostics and therapeutics through networkbasedapproaches. Briefings in Bioinformatics, 20(3):806-824.
- Paul, A. and Radhakrishnan, M. (2020). Pomegranateseedoil in foodindustry: Extraction, characterization, and applications. Trends in Food Science and Technology, 105:273-283.
- Piñero, J.; Ramírez-Anguita, J. M.; Saüch-Pitarch, J.; Ronzano, F.; Centeno, E.; Sanz, F. and Furlong, L. I. (2020). The DisGeNET knowledge platform for disease genomics: 2019 update. Nucleic Acids Research, 48(D1):D845-D855.
- Sekeroglu, N. and Gezici, S. (2019). Astragalus neurocarpus Bioss. as a potential source of natural enzyme inhibitor associated with Alzheimer's and Parkinson diseases along with itsrichpolyphenolic content and antioxidant activities. Ann. Phytomed., 8(1):82-87.

- Shabbir, M.A.; Khan, M. R.; Saeed, M.; Pasha, I.; Khalil, A.A. and Siraj, N. (2017). Punicicacid: A striking health substance to combat metabolic syndromes in humans. Lipids in Health and Disease, 16:1-9.
- Singh, A. K.; Rai, S. N.; Maurya, A.; Mishra, G; Awasthi, R.; Shakya, A. and Singh, M. P. (2021). Therapeuticpotential of phytoconstituents in management of Alzheimer's disease. Evidence-Based Complementary and Alternative Medicine, 21:1-19.
- Thorn, C. F.; Klein, T. E. and Altman, R. B. (2013). PharmGKB: The pharmacogenomics knowledge base. Pharmacogenomics: Methods and Protocols, pp:311-320.
- Velu, G.; Palanichamy, V. and Rajan, A. P. (2018). Phytochemical and pharmacological importance of plant secondary metabolites in modern medicine. Bioorganicphase in naturalfood: An overview, pp:135-156.
- Wu, J.; Vallenius, T.; Ovaska, K.; Westermarck, J.; Mäkelä, T. P. and Hautaniemi, S. (2009). Integrated network analysis platform for protein-protein interactions. Nature Methods, 6(1):75-77.
- Wu, X.; Zheng, X.; Tang, H.; Zhao, L.; He, C.; Zou, Y. and Ye, G (2022). A network pharmacology approach to identify the mechanisms and molecular targets of curcumin against Alzheimer disease. Medicine, 101(34).

Sevgi Gezici and Nazim Sekeroglu (2023). Investigation of pharamceutical properties and drug likeness score of punicic acid using bioinformatics tools. J. Phytonanotech. Pharmaceut. Sci., 3(1):22-36. http://dx.doi.org/10.54085/ jpps.2023.3.1.4